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Viscous flow near a corner in three dimensions 

By N. TOKUDA 
Department of Mathematics, University of Southamptont 

(Received 2 April 1971 and in revised form 7 September 1971) 

The nature of a three-dimensional viscous flow along a corner near its junction 
has been clarified in this paper by constructing a Stokes slow-flow solution. 
We have further demonstrated that this Stokes solution can be matched onto 
an inertial-flow solution in principle by establishing an overlap domain along 
one sector of an inertial-flow region, namely along the flow symmetry line. 
This Stokes solution reveals a remarkably complex structure of the flow as 
characterized by a separating streamwise velocity profile in addition to a sequence 
of Moffatt’s viscous eddies in a cross-flow plane. 

1. Introduction 
The viscous flow along a right-angle corner formed by the intersection of two 

semi-infinite flat plates presents inherently three-dimensional characteristics, 
particularly near the corner, owing to the mutual interaction of the boundary 
layers from each plate. The flow in this geometry has been investigated by various 
authors as a first attempt to understand the general behaviour of a fully three- 
dimensional flow near corner junctions. 

The first attempt on this subject by Carrier (1947) is incomplete as the stream- 
wise vorticity has not been taken into account in his analysis. This was corrected 
later by Pearson (1957) and Rubin (1966), both of whom showed that a quite 
different cross-flow pattern indeed results with this correction. In particular, 
a consistent method of solution to this problem based on the method of matched 
asymptotic expansions was first demonstrated by Rubin (1966), who followed 
essentially the scheme of solution developed by Stewartson (1961) for flow past 
a quarter-infinite plate. In  Rubin’s approach the flow is divided into three 
regions, namely (1) the potential-flow region, ( 2 )  the boundary-layer region and 
(3) the corner-layer region, and solutions in each region are assumed to overlap 
with solutions in the other two neighbouring flow regions in appropriate inter- 
mediate domains (see also figure 1). 

Despite the simple geometry involved, the flow in the corner-layer region is 
remarkably complex, exhibiting fully three-dimensional characteristics. It can 
only be determined by solving three nonlinear elliptic equations simultaneously 
satisfying the required asymptotic boundary conditions (see Q 2 for details). 
Carrier (1947), Pearson (1957) and, most recently, Rubin & Grossman (1969) 
have all integrated the corner-layer equations numerically using a relaxation 
method. In  particular Rubin & Grossman followed consistently the asymptotic 

t Present address: 3-6-22, Sekiguehi, Bunkyo-ku, Tokyo. 
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FIGURE 1. Flow past a right-angle corner and the co-ordinate system. (1)  Potential-flow 
region, (2) boundary-layer region, (3) corner-layer region, (4) Stokes region. 

matching method due to Rubin (1966). The author’s attention was drawnrecently 
to the experiments on this problem by Zamir & Young (1970) which appeared 
towards the end of the present investigation. It is at first very puzzling to find 
some considerable differences between the numerical result of Rubin & Grossman 
(1969) and the experiments of Zamir & Young, particularly near the corner. The 
differences are illustrated in figure 2. Note in particular that a considerably ex- 
tended low-shear region exists along the flow symmetry line consistently in all 
of the experiments as the isovels have a bulge across it but the numerical solution 
exhibits no trace of such a bulge. Various factors seem to contribute to  the 
complication of the flow there. The purpose of the present investigation is some 
elucidation of the nature of flow near the corner intersection region. 

The main result presented in the present paper is two-fold. First, we have 
constructed a Stokes slow-flow solution for three-dimensional viscous flow near 
the corner region which unveils and provides clear insight into the complicated 
structure of the flow there. Second, we have established an overlap domain 
between the Stokes region and an outer inertial-flow region. Thus we have shown 
that the Stokes solution can be matched to an outer inertial flow as in a finite- 
body low Reynolds number flow. Up to now no way has been known of matching 
if a body involved is infinite in extent as in our problem. Actual constants have 
not been determined in this paper, however, because it is too difficult to obtain 
any explicit form of a solution in the inertial region owing to the nonlinearity 
of the flow. Nevertheless, a possibility for linearization in the inertial region is 
also discussed in $5. The possibility of the matching is in itself important because 
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FIGURE 2. Streamwise isovels. -- -, experiment, Zar& & Young (1970); -, numerical 
results, Rubin & Grossman (1969). 

i t  now becomes clear how a ‘hitherto isolated ) Stokes flow joins onto an inertial- 
flow region comprising the dominant part of the corner-layer region. 

First, we formulate the problem in $ 2  using a new conformal co-ordinate 
system. An overlap domainis established in $ 3  and the Stokes solutionis obtained 
in 5 4. An outer inertial flow is formulated in $ 5. 

2. Formulation 
Consider a uniform incompressible viscous fluid flowing along a corner formed 

by two perpendicular quarter-infinite flat plates, with an undisturbed flow U 
at infinity parallel to the intersection of the two plates. We define Cartesian 
co-ordinates (x*, y*, z* )  along the plate with the origin at the leading edge and 
x* co-ordinate along its intersection (see figure I for details). We shall investigate 
the flow on a typical characteristic plane x = Ux*/v 9 1. 

The basic flow structure on this characteristic plane is now well understood 
owing largely to an excellent exposition by Rubin (1966). If y/x 9 1 and Z / X  9 1) 
the flow there is irrotational and the potential-flow region (1) of figure 1 results. 
Here y = Uy*/v and z = Uz*/v. If y/x 9 I with Z / ~ X  fixed or z/x 9 1 with y/Jx 
fixed, the flow approximates to the two-dimensional Blasius %ow and this 
region (2) is called the boundary-layer region. If y/,,/z and z/dx are O(l),  the 
corner-layer region (3) results and there the flow is inherently three-dimensional 
owing to the mutual interaction of the boundary layers. The flow in region (3) 
is of the boundary-layer type in the sense that the inertial effect is of the same 
order as that due to diffusion. We see now that these three flow regions are still 
not quite general enough because another singular flow region exists and is in 
fact imbedded within region (3). In  this region Stokes slow-flow motion dominates 

9-2 



132 N .  Tolcuda 
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FIGURE 3. Conformal co-ordinate system. 

and this region, with which our present analysis will be mainly concerned, will 
be called the inner (Stokes) corner-layer region (4). This inner corner-layer region 
results if y /x  is fixed as y/ J x  -+ 0,  i.e. y / d x  and z / J x  --f 0 simultaneously at the 
same speed. From this physical background it is clear that we must seek a solu- 
tion for the corner-layer region (3) such that it will join smoothly onto solutions 
valid not only in (1) and (2) respectively, but also onto a Stokes solution in (4) 
which we shall construct in this paper. Because the Stokes region (4) is a singular 
region, much care seems to be required in order to extend the corner-layer 
equation by integrationinto the Stokesregion. It is possible that the disagreement 
of Rubin & Grossman’s (1969) numerical solution with the experiment of Zamir & 
Young (1970) is partly due to a failure, on the part of the numerical computations, 
to account for the proper match with the inner corner-layer solution (4). 

In  the analysis of the corner-layer flow all the investigators on the subject 
(Carrier 1947; Pearson 1957; Rubin 1966, etc.) used Cartesian co-ordinates. 
Although the Cartesian co-ordinates have a definite advantage of simplicity, and 
also of smooth join into the boundary-layer region (2) , t  they are not natural 
co-ordinates for the problem. One of the simpler sets of natural co-ordinates for 
this problems can be found using a simple conformal transformation as follows: 

XI = x ,  X 2 + i X ,  = ( z+ iy )2 .  (2.1) 
The Blasius variable 7~ is given as V B  = y/,/x with z/& 9 1. Hence 78 is obtained 

directly from Cartesian co-ordinates on a characteristic surface of z = constant 
3 Zamir (1970) suggested another set of natural co-ordinates to this problem: z1 = x, 

x2 = (y8-zS)%, z8 = yz/(y+z). Zamir’s co-ordinates are too complicated to use, particularly 
in transforming the biharmonic equations. 

1. 
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We note that in this system the line of flow symmetry is described by x2 = 0 and 
the plate wall by x3 = 0 everywhere (see figure 3). Far from the corner, as x2 --f co, 
some stretching of variables is necessary to obtain the Blasius variable (see 
equation (2 .22 )  for example). 

Cylindrical polar co-ordinates are also useful in this problem although they 
are not natural co-ordinates in the sense used above. 

6 = x, rei* = z+iy.  (2.2) 

Without exception, existing two-dimensional Stokes-flow solutions near 
corners {Carrier & Lin 1948; Moffatt 1964; Lugt & Schwiderski 1964) have been 
obtained in polar co-ordinates. It is often true that some flow properties as well 
as some algebra required in the analysis are greatly simplified using polar GO- 

ordinates (see equation (4.11), for example). On the other hand, the use of the 
conformal co-ordinates (2.1) is crucial in establishing an overlap domain from 
the Stokes t o  the inertial-flow region as we shall discuss in detail in 0 3, and no 
way of establishing this using the polar co-ordinates of (2.2) seems to be known. 

The complete Navier-Stokes equations can be expressed in terms of the new 
orthogonal co-ordinate system of (2.1) following the usual method of orthogonal 
vector geometry in which only the diagonal metric tensors remain. In particular, 
the formulae given by Lagerstrom (1964, p. 60) are most useful in working out 
the details of the present transformation. The final results are 

and (wl, w2, w3) are the dimensionless velocity components corresponding to 
(xl, x2, x3)  respectively. We particularly note that J* is independent of the x, 
co-ordinate. 

Following Rubin (1966), the governing equations in the potential-flow, 
boundary-layer and corner-layer regions can be deduced from these Navier- 
Stokes equations. We shall merely derive the governing equations for the 
corner-layer region from which the equations for a Stokes region also result. 
The derivations in the other two regions are similar but will not be given here. 
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First, we introduce the following corner-layer variables : 

x, = x,, x, = x2/x1, x, = x,/x,. (2.8) 

The appropriate corner-layer limit is X, and X, fixed as X, --f co. A consistent 
asymptotic expansion in the corner-layer region can be obtained by applying 
the corner-layer limit as follows (see also Rubin 1966): 

(2.9) 1 v1 = U.(X,, x,, X3) = Uo(X,, X,) + X,4U,(X,, X3) + X,1U,(X,, X,) + . . -, 

v3 = W(X,, x,, X,) = X,*W,(X,, X,) + X,lW2(X,, X,) + . . ., 
v g  = ~ ( x , ,  X2, X3) = X , t ~ 1 ( X 2 , X 3 ) + X i ~ ~ 2 ( X 2 , X 3 ) +  ..., 

P = P(X,,X,, X,) = f'0(X,,X3)+X,+P1(X,, X3)+X,'P2(X,,X3) + .... 
By substituting (2.9) into (2.3)-(2.7), the leading terms of the expansion for 

the corner-layer region can be obtained as follows. For simplicity, we drop the 
subscripts from uo, w,, w1 and P, hereafter. Now, 

(2.10) 

aw ") 
(2.12) 

ap (PV, aw y ( = Jk-+J -+- +- x --x --- ax, ax, ax, ,ax, ,ax, 4 

+ J t  (vg+ WE) +; (X,v2-X,vw) 

av ") (2.13) = J*-+J -+- +- X --X ap a2w a2w 

8x3 (ax; axJ :"( ,ax, ,ax, 4 9 

where J = 4(X; +Xi)* and we note that 

The continuity equation (2.10) can be satisfied exactly by introducing the two 
vector potential functions $ and Q, such that 

(2.14) 

It is convenient to rewrite (2.11)-(2.13) as follows: 

L,(u) = Nl(% v, w), (2.15) 

L,($) = H($)  + N2(u, v, w), (2.16) 

in which the velocity field (u, v, w) is related to ?,b and q5 by (2.14). L, and L, 
are harmonic and biharmonic operators and in the present co-ordinate system 

L, = JV2, L, = JV'(JV'), (2.17), (2.18) 
are given by 



Viscous$ow near a corner in three dimensions 135 

where V a  = az/aXi+az/aXg and J = 4(Xg+Xg)k iVl is the operator involving 
the nonlinear convective terms, namely those on the left-hand side of (2.11) ; 
(2.16) is obtained from (2.12) and (2.13) by eliminating pressure by cross- 
differentiation. H is a fourth-order operator like the biharmonic operator L, of 
(2.16) and arises through the interaction of fr in the w velocity component 
(see (2.14), for example): 

A?, is similar to Ifl of (2.15) and involves the nonlinear convective terms. It can 
be formally obtained by cross-differentiating (2.12) and (2.13) and taking their 
differences. 

The appropriate boundary conditions are 

(2.20) 

(6, $1 + ($p, $p) 8s X3 + ~0 with Xz  fixed, (2.21) 

($7  $1 --f ($B, $I?)  as x ,  + a with x,/x, fixed7-t (2.22) 

where (c$~ ,  1 C F P )  and lCFB)  are the velocity components in the potential-flow 
and boundary-layer regions respectively (see Pal & Rubin (1969) for a detailed 
asymptotic analysis). For the complete specification of the boundary conditions 
for this elliptic problem one needs another condition along X ,  = 0 for any X 3 .  
This can in principle be satisfied by the flow symmetry condition. Obviously u 
and w are symmetric in X ,  and w is anti-symmetric in X , :  

4x2, X3) = a( - x,, X3), 

v@,,  X , )  = - 4 - x,, x31, 

4x2, X,) = w( - x,, X,) .  

In  terms of the vector potential functions 6 and $, this symmetry condition 
requires (2.23) 

In principle, (2.15)-(2.23) are sufficient to determine a complete flow in the 
corner-layer region. When the flow in the corner-layer region as fully described 
above is examined closely, it becomes quite clear that two distinct flow regions, 
namely an inner Stokes-flow domain and an outer inertial-flow domain, co-exist 
in the corner-layer region. In the Stokes approximation, which is valid sufficiently 
close to the sharp corner, the diffusion dominates the convection. Therefore, the 
problem may be linearized here. Away from the corner, we enter an inertial-flow 
region in which the effects of diffusion and convection are of the same order. 

t This restretching is necessary if the present co-ordinate system is to asymptote to 
the Bhsius-type boundary-layer region appropriately. This is similar to the derivation of 
the Blaeius variable for flow past a semi-infinite flat plate in Cartesian co-ordinates. 

1CF& X3) = P( - x,, X3)> $(XZ, X3) = - $( - x,, X3)- 
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I n  5 3, we demonstrate consistent inner and outer limiting processes which pro- 
vide a Stokes and an inertial-flow expansion, as described above, from the corner- 
layer equations (2.15) and (2.16) (see equations (3.1) and (3.2) for details). Most 
important, an overlap domain between the inner Stokes flow and the outer 
inertial-flow domains will be demonstrated. All of the previous works on the 
subject (Carrier 1947; Pearson 1957; Rubin 1966; Rubin & Grossman 1969) 
have emphasized the inertial-flow domain and little attention has been paid to 
the singular Stokes domain. 

3. Inner and outer limit and overlap domain 
A consistent inner expansion, a solution of which reduces to that of Stokes 

slow-flow motion, can be constructed formally by introducing the following inner 
variables: 

I n  this inner limit we note that X ,  -+ 0 since the inner variable Y remains fixed. 
An inner Stokes solution obtained by this limiting process shows that the diffusion 
dominates the convection, allowing the inner expansion in the form of (4.1) or 
(4.2) (see 3 4). If we keep X ,  fixed as X ,  -+ 0, the inner variable Y -+ co. This 
suggests that another distinct flow region exists under such a limiting process. 
We should, therefore, now introduce the following outer variables in the domain 

(3.2) 
where Y + 00: y = X ,  fixedas X,-+O. 

This limit is called an outer limit and it is easy to confirm that the inertial 
term and the diffusion term obtained in this limiting process balance in this 
domain. (See equation (5.5) of 5 5 for further clarification of this point.) Because 
the inertial-flow region in fact extends into the corner-flow region for any finite 
X ,  and X,, (3.2) describes only one sector of the complete inertial-flow region, 
namely that along the flow symmetry line. We shall now prove that an inner 
Stokes solution obtained by the limiting process of (3.1) and an outer inertial 
flow solution can be matched along this particular sector near the flow symmetry 
line of the inertial region as described by (3.2). 

Y = X , / X 2  fixed as X, -+ 0. (3.1) 

To prove this, we first introduce the following intermediate limit: 

YI = X,/Xs fixed as X, --f 0 (3.3) 

with 0 < a: < 1. By comparing (3.1) and (3.3) and introducing them into (2.15) 
and (2.16)) we can easily confirm in both (3.1) and (3.3) that 

Li $ Ni for i = 1,2.  

This implies, in both the Stokes and intermediate limits, that the diffusion effect 
dominates the inertial effect. Unlike the finite-body analysis of, say, Proudman & 
Pearson (1957)) in which a small parameter exists, the inner and intermediate 
problems of (3.1) and (3.3) do not reduce to the same problem because a small 
co-ordinate X ,  rather than a parameter is used in the stretching. It is not 
difficult to see, however, that an intermediate problem can be deduced from an 
inner problem by considering the limit of Y --f GO in the inner limit. This means 
that the inner Stokes solution is the more general solution of the two and overlaps 
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with an intermediate solution over the complete domain defined by 0 < a < 1. 
By now comparing (3.2) and (3.3), we see that an overlap domain exists between 
the outer inertial region and the intermediate region, hence the inner Stokes 
region can be established provided that the validity of the outer solution can 
be shown to extend even slightly towards the inner region. This extension of the 
validity of an outer solution is assured by Kaplun's extension theorem, which 
can be directly applied to this problem (see Kaplun 1967, p. 97). We have thus 
proved that an overlap domain exists between the inner Stokes solution and the 
inertial-flow solution along X ,  -+ 0. This proves that an inner Stokes solution 
and an inertial solution can be matched along X ,  --f 0 in this problem. In the 
present analysis, we merely follow a conventional general matching principle, 
namely 

The outer representation of the inner expansion (as Y -+ 00) 

= the inner representation of the outer expansion (as q -+ 0). (3.4) 

One of the great advantages in using the present conformal co-ordinate 
system is that one can thus define the inner and outer limit and carry out the 
conventional matching procedure of the asymptotic expansions most systemati- 
cally. As a check, one can construct an inner Stokes expansion using other co- 
ordinate systems. The most well-known one is the polar co-ordinate system used 
by Carrier & Lin (1948) and others for two-dimensional flows. The corresponding 
inner limit to (3.1) will then be 

0 fixedas r +  0, (3.5) 

where r,  8 are polar co-ordinates. In  this approach, we have no means of de- 
termining how an inner solution constructed by the limiting process of (3.5) 
can join onto an outer flow as we have clearly demonstrated in (3.1)-(3.4). 
Our preceding discussion shows that an inner Stokes solution can be matched onto 
an outer inertial solution in the following region in polar co-ordinates: 

r finiteas @ - t o .  ( 3.6) 

If we are to stick with polar co-ordinates in the analysis, it is not at all clear that 
an inner solution of (3.5) and an outer solution of (3.6) will ever match. It is owing 
to the difficulty of establishing an overlap domain in polar co-ordinates that no 
progress has been made in the analysis beyond the construction of an inner Stokes 
solution. We are now certain that an inner Stokes solution matches with an 
inertial-flow solution in the overlap domain? of (3.2) or (3.6). A difficulty in 
determining all the constants of a Stokes-flow solution remains here, however, 
because it seems too difficult to obtain an explicit analytic solution for the outer 
inertial-flow region. A complete numerical integration in the inertial-flow region 
seems necessary, with the outer form of a, Stokes solution providing the boundary 
conditions on X ,  = 0. We give further detailed discussion on this point in 5 5. 
We shall now present an inner Stokes solution. 

t A similar situation arises in visoous flow near the leading edge of a semi-infinite flat 
plate or, for that matter, in any two-dimensional viscous flow near corners past a semi- 
infinite body. I have already given a detailed explanation in the former leading-edge flow 
why an overlap domain may not be established using polar co-ordinates (Tokuda 1972). 
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4. Inner Stokes-flow solution 
An inner Stokes expansion can be obtained from the corner-layer equations 

(2.15) and (2.16) by repeated applications of the inner limit of (3.1). Despite the 
enormously complicated form of governing equations (2.15) and (2.16), a re- 
markably simple scheme of solutions emerges by this inner limiting process. We 
shall show that a self-consistent inner Stokes solution for @ and # can be given 
by the following asymptotic expansions: 

$-cx2, $1+$30+$31+"' 

N X2G1( Y )  +Xi  In X2G30( Y )  +XZG3,( Y )  + . . ., 
# ( x 3 7  #2Of#A1+#30+#3l+" '  - X~~20(Y)+X~1KA1(Y)+X~1nX,K30(Y)+X~K3,(Y)+ ..., (4.2) 

all with Y fixed as X, -+ 0. A, is a complex number given by Moffatt (1964) as 

A, = 2.904 + 0.7322i. 

From the computational point of view, the streamwise velocity u is often more 
convenient than $ in this problem because u is governed by harmonic operators 
in the inner region as we shall soon see. Because $ and u are related by (2.14) 
the inner expansion for u is given as 

U(X,, Y )  N U,+U,O+U,l+ ... 
N X,Pl( Y )  +x~1nX2F3,( Y )  +X;P3,( Y )  + ..., (4.3) 

with 

Appropriate boundary conditions which one can specify for the inner Stokes 
solution are the no-slip flow condition of (2.20) and the flow symmetry condition 
of (2.23). Boundary conditions in a far field, namely (2.21) and (2.22), cannot be 
enforced in this Stokes solution and must be replaced by the matching condition 
(3.4) to the outer inertial-flow solution. 

The basic scheme of solution in the inner Stokes flow becomes evident by 
substituting the expansion of (4.1)-(4.3) into (2.15) and (2.16). First, we note 
that the nonlinear terms Nl and N, of (4.1) and (4.2) are of higher orderst than 
those of harmonic or biharmonic terms on the left-hand side of those equations. 
Therefore, the streamwise velocity u is basically governed by harmonic equations 
and the cross-flow component # by biharmonic equations. 

4.1. First-order streamwise $ow solution u1 and 

By substituting (4.3) into (2.15), we see that Fl must satisfy 

( I +  Y2) iq  = 0. (4.4) 

t For example, Nl is definitely of higher order than L,(u) unless o, w are of O(X;+).  
This obviously cannot be true in the present situation because, if it were so, one would be 
able to find a biharmonic solution V4$ = 0 in the form 4 = X!G( Y ) ,  and Moffatt (1964) 
shows that this is not possible. 
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A solution which satisfies the required boundary conditions is 

F l = A I Y  or u ,=A,X ,Y .  (4.5) 

In  an outer variable, this gives u1 = A I X , .  Hence 

G, = &Al[(l+ Y2)*-1]sgnY or +, = &A,X2[(1+ Y2)t-i]sgnY, (4.6) 

where A,  is an arbitrary constant. 

4.2. First-order cross-$ow solution I$, 
Now +, of (4.6) introduces a non-homogeneous term into the cross-flow equation 
(2.16) through the first term of the right-hand side, B($l). Substituting +l into 
(2.19), we find that 

H(+,) = -4A,sgnY. (4.7) 

Therefore, we must expect a term of O ( X i )  in the cross-flow component I$ as 

(4.8) 
follows. We write 

$2 = X%K,(Y) sgny, 
then K,  must satisfy 

(1+ Y2)3K2+4Y(1+ Y2)2K:+(1+ Y2)Ki-2YK;+2K2 = -$Al. (4.9) 

A solution for K,  which satisfies the boundary condition (2.20) and the flow 
symmetry condition (2.23) is 

K ,  = QAl[(l+ Y2)*--1]. ( 4 . 1 0 ~ )  

(4.10b) Hence 

$, gives the cross-flow components 

v, = &A,XkY/( 1 + Y2)* and w, = $A,Xi Y2/(  1 +- Y2)t. 

I$, = &Xi[( i + Y2)t - 13 sgn Y; 

It is worthwhile noting that in cylindrical polar co-ordinates the first-order 
velocity of (4.5) and (4.10) above represents a much simpler radial flow field 

(4.11) given by 

v, and v, denote the velocity component in the r and 8 directions respectively. 
In  polar co-ordinates only the radial component v, exists in the cross flow. 
Physically this v,. is merely the outflow necessary to balance the variation of u 
along the main-stream direction. 

u1 = Alr2sin28, vr2 = &A,r3sin28, vo2 = 0 ;  

4.3. ' Viscous-eddy ' cross-flow solution KAl or $Al 

Using N, of (2.16) and $, above, it is found that the nonlinear effect in this 
problem starts to appear a t  O(X!) or O(r6). One of the most interesting results 
in the present three-dimensional corner-flow problem is the appearance of viscous 
eddies in the cross-flow plane preceding this nonlinear effect. It was Moffatt 
(1964) who first correctly noted and interpreted the appearance of viscous eddies 
consisting of a sequence of eddies of rapidly decreasing size and intensity near a 
sharp two-dimensional corner if its angle is less than about 156" for symmetrical 
flows. 

Write h i  = x$ lKA1(y) J  (4.12) 
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then, assuming that Re (A,) < 3-0, gAl must satisfy the homogeneous biharmonic 
equations : (4.13) 

where L, is a biharmonic operator given in (2.18). The equation for reduces 
exactly to a Stokes solution for a corner in two dimensions. Because the corner 
angle 2a of the present problem is 90" and is less than a critical angle 156", 
a viscous-eddy solution of Moffatt's type must arise in this flow. Biharmonic 
solutions to (4.13) can in principle be obtained by the present conformal co- 
ordinates. The process of finding eigenvalues for the exponent becomes very 
tedious in this co-ordinate, however, because a pair of fourth-order differential 
equations must be solved simultaneously such that the flow symmetry condition 
results for Y -+ co. In  polar co-ordinates, these complex eigenvalues can be found 
by merely solving a simple transcendental equation. In terms of the polar 
co-ordinates, Moffatt (1964) shows the leading term for 2a = 90" for symmetrical 
flow is (4.14) 

where 2A, = K~ + i ~ ,  with K ,  = 5.80825, K, = 1.4639 and B, and C, some arbitrary 
constants. r and 8 are related to the present inner variables Y and X, by 

= r2A1(Bl sin h,8 + C, sin (A ,  - 2) O), 

r = xB( 1 + Y Z ) ~ ,  2a = tan-, I/ Y. (4.15) 

Equation (4.14) can always be rewritten as (Moffatt 1964) 

q5Al = A,rKlsin(K21nr+s), (4.16) 

s and A ,  being functions of 8. Equation (4.16) shows clearly how viscous eddies 
must result as T -+ 0. The outer limit of (4.14) in the present limit of (3.2) can be 
obtained by choosing 8 -+ 0. Accordingly, the outer representation of 

= iD,y+l)sin (~,lny+s,)+o(y3), (4.17) 
where 

0; = (B,  + (K; + K;) - 4ClK1(& + C,) + 4Cf and e0 = cos-1 ((B, + C,) K,/D,). 

Equation (4.17) is an outer form of the leading term of the viscous-eddy solution. 

is 

4.4. Second-order streamwiseJlow u3 and $3 

Intuition suggests that the next term of the streamwise velocity u3 is O(X;) ,  but 
the outer expansion of the inner solution us, namely X, fixed as X ,  -+ 0, de- 
velops a discontinuity along the line of flow symmetry X, = 0. (See equation 
(4.25) for clarification of this point.) This cannot be physically accepted. A 
correct solution must be preceded by a logarithmic term as is so often the case 
with singular perturbation problems. We therefore write 

u = X,Fl( Y )  +Xi1nX,F3,,( Y )  +X$F,,( Y )  + ... ; (4.18) 

F30 must satisfy (1+ Y2)F~0-4YF~0+6F30  = 0. (4.19) 

A solution for F3, is P30 = A30( Y - *Y3), (4.20) 

where A,, is an arbitrary constant which must be chosen such that a discon- 
tinuity of velocity will disappear, as we demonstrate Iater. 
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F31 must now satisfy 

(1 + Y2)Fgl- 4YFi1+ 6F3i = -A3o(&Y3$ 3 Y )  - sgn ( Y )  A2, Y2 /8 ( l  + Y2)*. (4.21) 

We note that sgn ( Y )  in the last term is necessary because the absolute value 
is always understood for the Jacobian J .  Note that in terms of the inner variable 
J becomes 

J = 4(XZ, + Xg)a = 4 sgn (X,) x X2(  1 + Y2) i  = 4 X ,  sgn ( Y )  (1 + Y2)a. 

4 1  = FPl + Fp, f F c ~  We now write (4.22) 

(4.23) 

L(Fpz) = -A30(+Y3+ 3 Y ) ,  (4.24) 

where L = (1 + Y2)  d2/d Y 2  - 4 Y d/d Y + 6 and Fc is a complementary solution. 
Two independent Complementary functions to L(F) = 0 are ( Y  - +Y3) and 

( 1  - 3 Y 2 ) ;  Fpl and Fp2 can then be obtained by the method of variation of 
parameters. The final results are 

Fpl = &A2, sgn ( Y )  [( 1 + Y2)i  ( 2  - 7 Y2)  - 2( 1 - 3 Y,)], 

FPz = A,,[&( 1 - 3 Y2)  tan-l Y + Q (3 Y - Y ,) In ( i f  Y2) + Q Y ( Y - 3)]. 

(4.25) 

(4.26) 

We immediately note that the outer form of the inner solution with Fpl alone 
(that is, without the preceding logarithmic term) contains a discontinuity across 
X ,  = 0 with X ,  finite as 

FPl - -&At+ O(X,) at X ,  = Of,  

N &A2,+O(X3) at X ,  = 0-. 

Such a discontinuity cannot be allowed in the solution. However, this can be 
avoided and hence the present asymptotic expansion can be continued without 
failure if we include the logarithmic term and choose the constant A,, as 

A,, = A2,/3On. (4.27) 

A complete solution for F,, is therefore 

F,, = A31(Y-+Y3)+&42,[sgn(Y) { ( I+  Y2)6(2-7Y2)-2(1-332))  

+ ( 6/77) {+( 1 - 3 Y2)  tan-l Y + +( 3 Y - Y3) In ( 1 + Y2)  + Q( Y3  - 3 Y)}] , (4.28) 

has the following where A,, is an arbitrary constant. For Y < 1 and Y 
expansions : 

1, 
- 

Y5+ ... for Y -g 1, (4.29) 
A2, Y4 F31 N A31 Y - -  A,,+- ---- 

y3(  3 poi) 96 36077 

A2, Y In Y - -- 
A2, 16 3 
360 7~ 2 40 ?T 8 Y 

+ y  ( A 31 -- ( -+- )) _ _  _ - _  ‘ ) A + O ( & )  for Y $  1. (4.30) 
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4.5. Second-order cross-$ow solution $,,, $31 

The second-order streamwise flow and $31 again induces essentially through 
the continuity equation the cross-flow velocity, because then H($-m) and H($3,) 
do not vanish. In  addition, the nonlinear term N, starts to have an effect in this 
problem. Therefore we write 

$ = X i  K,( Y )  + X 2 K A 1 (  Y )  + X i  In X ,  K3,( Y )  + X :  K3i( Y )  + . . . . (4.31) 

K,, and K,, must now satisfy the following non-homogeneous equations: 

where 
a 4  d2 d 

L,= ( l + Y z ) d y 4 + 3 ( 1 + Y 2 ) - - 6 Y - + 1 8  d Y2 d Y  

(4.32) 

(4.33) 

(4.34) 

and C,, and C31 are non-homogeneous terms. The C3, term arises from H($30) and 
N, of (2.16). The contribution to C,, arises from the terms N, and 
also K,,. Neither C,, nor C,, seem to vanish but evaluation of these terms 
has not been done in the present paper as the algebra seems too tedious, owing 
partly to the complicated form of $31 and also the operator H (see equation (2.19)). 

The present scheme of solution can in principle be continued to higher-order 
expansions. The next term of the inner solution for the stream-wise velocity 
field does arise from the viscous-eddy cross-flow solution q5Al. The expansion, 
therefore, looks like 

u = X , ~ l ( Y ) + X ~ l n X 2 F 3 0 ( Y ) + X ~ F ! l ( Y ) + X 3 * 9 ' J ~ 4 F  2 A , ( ) +  Y .... (4.35) 

We now examine the outer form of the inner Stokes solution so that we can 
match our inner solution to the complete corner-layer equations (2.15)-(2.23). 

5. Outer inertial-flow solution 
As we have already discussed in 5 3, the appropriate outer limit in this problem 

(5.1) 
is 

7 = X ,  fixedas X,+O. 

The inner Stokes solution we have constructed in $ 4  shows that it has the 
following outer representation in terms of the outer variable given in (5.1) : 

(5 .2 )  

(5.3) 

u fo(7) + XifZ(7) + X"i4(7) + * -. 9 

q5 N X,{&Al 7 + 80, ~ g ( ~ 1 - l )  sin (K ,  In 7 + e0) + . . .> + O ( X i ) ,  

where for 7 < 1 

(5.4) 1 fo - A1T-k { - A31 -I- &A;( 41" - 21)) 47, + . . . , 
fi {A31-&A!(16/7T+#)}7 +.**, 
f 4  N -&Aq(l/?T-&) 1/7+*.*, 

eo being a constant, K~ = 5.8082 and K, = 1.4639. The expression for @ can be 
deduced from (5.2) by using (4.3). Now from the form of solutions given in (5.2) 
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and (5.3) we can easily confkm that the convective term and the diffusion term 
of (2.15) and (2.16) are of the same order in this outer limit: 

L,(uo) = O{N,(u, ZI, w)} for 7 fixed as X ,  + 0 i = 1,2.  (5 .5)  

This relation is certainly true for 7 and X ,  fixed, namely within the whole corner- 
layer region. This confirms our previous statement that any point on X ,  = 0 
with finite X,, that is, along the flow symmetry line, must also belong to the 
outer inertial-flow region. 

A correct solution for the complete corner-layer problem in (2.15)-(2.23) must 
reduce to the present form of solution (5.2) and (5.3) for X ,  small as X ,  --f 0,  the 
inner form of the solution in turn having already satisfied the Stokes slow-flow 
solution. Any corner-layer solution which does not reduce to the present form 
(5.2) and (5.3) in the limit of (5.1) is incorrect. We show, for example, in the 
appendix that Zamir’s (1970) corner-layer solution on the plane X ,  = 0 does 
not reduce to the present form and hence is not a correct solution here. 

The form of the expansion in (5.2) and (5.3) seems to suggest a t  first that a 
complete corner-layer solution can also be constructed in a power-series form ; 
this is of course a familiar technique in the ‘parabolic’ boundary-layer theory. 
However, we encounter a difficulty immediately because the governing equations 
here are elliptic. fo, f,, . . . cannot be fully determined because, in determiningfo, 
the equation for fo involves the next term of the expansion f,, unknown at this 
stage, and so forth. Van Dyke (1966) and his associates have developed a method 
of series truncation to deal with the difficulty of the present situation. If we 
adopt this method, the first approximation to fo, obtained by neglecting the 
effect of f,, can be fully determined and, in fact, reduces to Zamir’s (1970) 
problem (see appendix for details of Zamir’s problem). However, Zamir’s solution 
has the wrong form in the present outer limit of (5.1). All this suggests that great 
care seems to be necessary in applying the series-truncation method as the 
starting solution itself has a wrong form which must evidently be corrected as 
higher order effects such as f2, . . . are taken into account. 

Besides a modified Oseen method which is explained later in the section, the 
series-truncation method, which, as we have just discussed, is mathematically 
of doubtful nature, seems to be the only analytical method available to attack 
the complete corner-layer problem, namely the problem for all finite values of 
X ,  and X,. The numerical method of Rubin & Grossman (1969), which involves 
the Gaus-Seidel method of integration, seems to be the best procedure. 

Now, besides the boundary conditions of (2.20), (2.21) and (2.22), the corner- 
layer solution must satisfy the form of solution given by (5.2) and (5.3) as X, -+ 0: 

(u, v, w ) ~  -+ (u, v, w ) ~ . ~  with X ,  fixed small as X ,  3 0, (5.6) 

where (u, v, w ) ~ . ~  means the outer representation of the Stokes solution given by 
(5.2) and (5.3). In  fact the addition of (5.5) to (2.20)-(2.22) as the boundary 
conditions implies that the boundary conditions along the four complete corners 
of the problem, namely X, = 0, X ,  -+ CO, X ,  = 0, X ,  + co are specified, which 
is consistent with the elliptic equations. In  this way, we now see that the 
solution €or the singular Stokes flow region is now fully satisfied and it seems 
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that a regular numerical integration with uniform step size can now be applied 
over the whole domain of interest. 

A question arises as to why the present outer expansion does not lead to 
a linearized equation as in the outer Oseen expansion for a finite-body analysis 
of, say, Proudman & Pearson (1957). An important difference can be traced to 
the geometry of the boundaries, which do not provide a length scale in this 
problem. The linearization of the problem from a uniform stream has no physical 
meaning as an approximation for low Reynolds numbers because, unlike a 
finite-body problem, disturbances from the body do not vanish in the outer limit. 
This point has been discussed by Lagerstrom (1964, p. 90). An identical situation 
arises in viscous flow past a semi-infinite flat plate when the Stokes solution 
near the leading edge is to be joined onto an outer inertial-flow solution. A 
meaningful linearization from the uniform flow in this inertial region may still 
be possible even with such problems if correctly approached. In  studying a flat- 
plate problem of the above form Yoshizawa (private communication) has shown 
that two leading undetermined constants in a Stokes solution can be determined 
by matching with the modified Oseen solution of Lewis & Carrier (1949), with 
surprisingly good agreement with the existing numerical solution. A crucial 
factor is that the matching is carried out along the flow symmetry line as in this 
problem. The full significance of Yoshizawa’s findings will be discussed in detail 
in Tokuda (1972). Despite the three-dimensionality of the flow, the present 
problem is remarkably similar to the flat-plate problem in flow structure and 
this approach will also be pursued in a future study. 

6.  Results and discussion 
In  the present paper we have constructed a singular Stokes-flow solution in 

the inner corner domain of the corner-layer region. An inner Stokes solution is 
obtained by successively applying the inner limit of X, /X ,  finite as X ,  + 0 (see 
equation (3.1)) and its outer expansion is obtained by applying the outer limit 
of X ,  finite as X, + 0 (see equation (3.2)).  This outer form of the inner solution 
provides an appropriate asymptotic form of the solution which the complete 
corner-layer solution must satisfy as X ,  + 0 as well as equations (2.20)-(2.23).  As 
far as the author is aware, no other singular flow region exists in the whole domain 
of X ,  and X ,  finite. Despite the simple geometry involved in the problem, the 
present flow seems to have a very complicated flow structure as characterized by 
a separating flow profile and the appearance of viscous eddies near the corner, 
as discussed further below. 

The inner Stokes solution shows that the skin-friction coefficient based on 
the streamwise velocity u is given by 

= 2A,z  + (2Ay15n) x5 In x + 4A,,x5 + . . . . 21g=o 
For the purpose of comparison with the experiments of Zamir & Young (1970) 
and also Rubin & Grossman (1969), the distance measured in the original 
Cartesian co-ordinate system is used in (6.1). Zamir & Young’s experiments and 
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FIGURE 4. Maskell’s model for three-dimensional flow separation. 

Rubin & Grossman’s numerical results all confirm that the skin friction is of 
linearly vanishing type near z = 0 or X ,  = 0, as in (6.1). Therefore A,  + 0. Hence 
the E; term does not vanish and consequently the logarithmic term of O(Xgln X,) 
must intervene in the second approximation for the streamwise velocity. The 
appearance of a separating velocity profile is always a warning for a possible 
singular flow behaviour at such a point. The present asymptotic solution is valid 
only far downstream as X ,  -+ 00. Therefore in practice a flow separation would 
not take place. Interesting information may still be obtained on the separation 
flow pattern of this configuration from the dominant term of the present solution 
(4.1 l), supposing that such a separation is induced at  point X of figure 4 by some 
mechanism, say by a slight adverse pressure gradient. It may be confirmed from 
(4.11) that the point S is an only singular point involved in the flow field. There- 
fore, according t o  Maskell’s (1 955) classification, the separated flow pattern would 
take on a separation bubble form as illustrated in figure 4. The flow near X, = 0, 
which is obviously singular, seems to require careful analysis for this reason. 

In  the cross-flow plane, the leading term of the Stokes solution is a simple 
radial flow distribution which arises from term. A most interesting result 
which our analysis has unveiled is the appearance of a sequence of viscous eddies 
in the cross flow. This will dominate the terms of O(X32InX2) and O(X;) ,  which 
are induced partly by the second-order streamwise flow us and partly by the 
nonlinear effects of the problem. In  the inertial-flow region the viscous-eddy 
solution has the form given in (4.17) (see also equation (5.3)). The numerical 
solution of Rubin & Grossman (1969), which is intended for the analysis in an 
inertial-region, does not show viscous eddies in the inner corner-layer region 
although it does show some tendency for closed vortical patterns right in the 

I0 irLM 53 
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corner. The experimental evidence of Zamir & Young (1970) is not decisive on 
this point. In  examining their visualization picture of gas traces near the corner 
junction, we see that those traces near the intersection always tend to blur 
more widely than those away from it. To the present author, this seems to imply 
that gas near the corner is trapped in one of several small eddies, thus demon- 
strating the existence of the eddies. Because this Stokes region in which such an 
eddy solution appears is a singular region inbedded within the corner-layer region, 
much care seems t o  be required to reconstruct an eddy solution by numerical 
integration. Indeed Burggraf (1 966) has reconstructed a viscous-eddy solu- 
tion for a two-dimensional square cavity flow consistently up to Reynolds 
numbers of 1000 with a carefully calculated numerical solution. A Reynolds 
number of this problem based on a typical velocity in the cross-flow is obviously 
of O( 1) although that based on a streamwise velocity is large. Therefore, as far 
as the cross-flow is concerned, Burggraf’s numerical solution seems to provide 
interesting insight to  our problem. In all probability, a viscous-eddy flow exists. 
Another interesting result from Burggraf’s solution is that an almost inviscid 
flow region exists a t  the centre of the cavity within an inertial-flow region, with 
the boundary-layer type regions appearing near the cavity wall. This shows that 
in this problem an almost inviscid-flow region with low shear flow region exists, 
particularly along the flow symmetry line with the boundary-layer type viscous 
effect concentrated either near the free surface or away from the symmetry 
line. Zamir & Young (1970) have observed exactly this flow pattern in their 
experiments. The bulge in the isovels which they observed across the flow sym- 
metry line implies that a low shear flow region there is surrounded by a high 
shear region. Because of the singularity involved near a sharp corner, a finite- 
difference method will never probe the flow field fully. A mathematical representa- 
tion such as the present asymptotic analysis is vital if an adequate operational 
procedure for solution is to be given (see Motz 1946). 

The author is most grateful to Dr J.R.A.Pearson, who made many con- 
structive criticisms on the fist draft of the paper. The work reported here has 
been supported by a grant from the Science Research Council and was suggested 
by Professor K. W. Mangler, with whom useful discussions were held. The author 
also had useful discussions with Professor G. M. Lilley, Professor J. W. Craggs 
and Professor K. Stewartson. 

Appendix. Zamir’s (1970) solution on X ,  = 0 

In  studying the present corner-layer solution valid on the surface of the flow 
symmetry X, = 0,  Zamir (1970) has noted a similarity solution and deduced the 
following ordinary differential equation by assuming that the boundary-layer 
type approximations are valid across this plane, namely 82u/aXi < a%/ax;.t 
We have r6V{ -f&) + 2rt(fof4 - 2f3 -t 2r0(4fA - X )  - sfo = 0, (A 1) 

t This approximation actually corresponds to the first approximation of the series- 
truncation method in which the effect offa onfo is ignored. 
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where qo = X i  and u and w are related to fo by the continuity equation: 

u = fi - 2f0/q0, w = $Xc3(q,fi -fo), with II = 0 on X, = 0. 

For vo < 1, a solution which satisfies the wall condition can be developed as 

where a is an arbitrary constant. The streamwise velocity on X, = 0 is therefore 

u - a Z X ~ + - X Q +  ... ( 5 . 4  3u 1 
If the leading term X i  is to be a correct solution, one must be able to find the 

harmonic solution in the inner Stokes region in the present inner limit. Therefore 
we write as the leading term of the inner streamwise velocity u 

u1 = X t m Y ) ,  

where ( I +  Y2)P;- YP;+*Fl = 0. (A 3) 

A general solution of (A 3) can be written down by the contour infegration as 

where Ci is such that ( [ - z ) * ( ~ ~  = 0. 
Two independent solutions are obtained if C, includes i and C, - i within the 

contours. From this, we can deduce the correct solution satisfying the no-slip 
condition on the wall and also the flow symmetry condition is 

Pl = A,( 1 + Y2)t sin {# tan-1 I Y I). (A 5 )  

The absolute sign in tan-1 I Y I is necessary to ensure the flow symmetry. Although 
(A 5 )  provides the leading term of the expansion X t  in the outer representation, 
the derivatives of further terms show a discontinuity across the line X ,  = 0. 
We must conclude, therefore, that (A 1) is not a correct equation for the corner- 
layer flow on X, = 0. In fact we have shown in $ 5  that a2u/aXE must be retained 
even on the plane X ,  = 0. In  that case no similarity solution such as that noted 
by Zamir (1970) could be found. This confirms that the corner-layer solution 
must be consistent with the inner Stokes solution in the overlap domain of X, 
finite as X, + 0. 
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